

C2DTUACOMRo3 – CFP2 ACO Dual Fibre DWDM

DWDM Tunable 6.25GHz / Analog Coherent / 100G & 200G

For your product safety, please read the following information carefully before any manipulation of the transceiver:

However, normal ESD precautions are still required during the handling of this module.

LASER SAFETY

ESD

This is a Class1 Laser Product according to IEC 60825-1:2007. This product complies with 21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice No. 50, dated (June 24, 2007).

This transceiver is specified as ESD threshold 1kV for SFI pins and 2kV for all others electrical input pins, tested per MIL-STD-883G, Method 3015.4 /JESD22-A114-A (HBM)

The optical ports of the module need to be terminated with an optical connector or with a dust plug in order to avoid contamination.

1. Overview

C2DTUACOMRo3 is a high performance CFP2 ACO transceiver module for 100Gbps DP-QPSK or 200Gbps DP-16QAM data links over two single mode fibres. The amplified narrow linewidth tunable laser is shared between the transmitter and receiver sections. A tapped monitor diode is used to control the optical output power.

The receiver module is performing the coherent intradyne reception and O/E conversion of the incoming optical signal after being mixed with a local optical oscillator. Four pairs of balanced photo detectors perform quadratic detection and produce the I and Q components of the two orthogonal polarizations (X and Y).

This transceiver module is compliant with the CFP Multisource Agreement (MSA) and hot pluggable. Always contact Skylane Optics[®] commercial agents for compatibility with different equipment platforms.

2. Features

- Hot Pluggable CFP2 Multi-Source Agreement compliant Hardware
- OIF-CFP2-ACO-01.0, Implementation Agreement for CFP2
- Class 2 implementation with Linear Driver and TIA
- Tunable C-band Transmitter
- Transmitter Variable Optical Attenuator (VOA)
- Coherent Receiver
- Operating temperature range o°C to 70°C
- CFP2 Power Class 4 (< 12W)
- Single +3.3V Power Supply
- CFP MSA Management Interface (MDIO)

3. Applications

- 100G DP-QPSK
- 200G DP-16QAM

4. Optical Interface

Figure 1. CFP2 Dual Fibre (non-binding illustration)

P/N	Wavelength	Protocol	Optical Output Power¹ [dBm]	Optical Receiver Sensitivity ² [dBm]	Optical Receiver Overload ³ [dBm]
C2DTUACOMR03	ITU DWDM	100G 200G	-15 to 1	≤ -25	0

EOL over operating temperature range, settable in steps of 0.1dB
 See section 5.4 for definitions

3. The optical input to the receiver should not exceed this value. Transmitters must never be directly connected to receivers (optical loop back) before ensuring that proper optical attenuation is used

C2DTUACOMRo3_RevA.docx

Technical Parameters 5.

5.1. Recommended Operating Conditions					
Parameter	Min	Тур	Max	Unit	Notes
Storage temperature	-40		85	°C	
Operating Case Temperature	0		70	°C	
Relative Humidity			85	%	Non-Condensing
Power Supply Voltage	3.2	3.3	3.4	V	
Power Supply Current			3.75	А	
Power Dissipation			12	W	

5.2. General Specifications

Parameter	Min	Тур	Max	Unit	Notes
Symbol Rate			34.17	GBd	4
 Corresponding to the maximum bit rates and 68Chps (DR OBSK) and are addeded. 	A MA)				

4. Corresponding to the maximum bit rates 136.68Gbps (DP-QPSK) and 273.36Gbps (DP-16QAM)

5.2 Transmitter Ontical Specifications

Parameter	Min	Тур	Max	Unit	Notes
Average Output Power	-15		1	dBm	5, 6
Output Power Accuracy	-1		1	dB	6, 7
Centre Wavelength Range	1528.77		1568.36	nm	
Frequency Grid Setting	6.25			GHz	8
Centre Wavelength	λτ -13	λτ	λτ +13	pm	8

The output power is settable in steps of o.1 dB within the specified wavelength range
 Output power coupled into a g/125 µm single mode fibre
 Difference between the set value and actual value

Difference between the set value and actual value
 Per ITU-T G.694.1 flexible DWDM grid definition

E.A. Receiver Ontical Specifications

5.4. Receiver Optical Specifications					
Parameter	Min	Тур	Max	Unit	Notes
Receiver Operating Wavelength	1528.77		1567.54	nm	
			0		9
Receiver Input Power Range	-13		0	dBm	10
	-25		0		11
		11.5		dD	12
USINK FOILERAILCE		19		uБ	13

9. An input power in this range guarantees optimum OSNR performance, QPSK

An input power in this range guarantees optimum OSNR performance, 16QAM
 OSNR > 30dB, QPSK

12. BER = 3×10⁻², QPSK, 34.2GBd symbol rate, -18 to odBm input power 13. BER = 3×10⁻², 16QAM, 34.2GBd symbol rate, -13 to odBm input power

Transceiver Electrical Pad Layout 6.

Figure 2. Transceiver Electrical Pad Layout

C2DTUACOMR03_RevA.docx

7. Module Electrical Pin Definition

Pin	Symbol	I/O	Description	Logic	Pin	Symbol	I/O	Description	Logic
1	GND		Ground		53	GND		Ground	
2	NC	_	Do not connect		54	NC		Do not connect	
3	NC				55	NC			
4	GND		Ground		56	GND		Ground	
5	NC		Do not connect		57	RX_YQn	0	Rx YQ output RF signal (RF	
0					58			mapping [0,0,0])	
/	3.3V_GND		Ground		59 60			By VI output PE signal (PE	
0	3.3V_0ND				61	RX YIn	0	manning [o o o])	
10	3.3V	-			62	GND		Ground	
11	3.3V	-	3.3V Power Supply		63	RXMGCYQ		Rx YQ/YI gain control (RF	
12	3.3V				64	RXMGCYI	1	mapping [o,o,o])	
13	3.3V_GND		Ground		65	GND		Ground	
14	3.3V_GND		Groona		66	RXMGCXQ		Rx XQ/YI gain control (RF	
15	VND_IO_A		Do not connect		67	RXMGCXI		mapping [o,o,o])	
16	VND_IO_B				68	GND		Ground	
17	PRG_CNTL1		Programmable Control 1	LVCMOS	69	RX_XQn	0	Rx XQ output RF signal (RF	
18	PRG_CNTL2		Programmable Control 2	w/PUR	70	RX_XQp	-	mapping [o,o,o])	
19	PRG_CNTL3		Programmable Control 3		71	GND		Ground	
20	PRG_ALRM1		Programmable Alarm 1	LVCMOC	72	RX_XIn	0	Rx XI output RF signal (RF	
21	PRG_ALRM2	0	Programmable Alarm 2	LVCMOS	73			mapping [0,0,0])	
22			Ground		74				
23				LVCMOS	/5	INC.		Do not connect	
24	TX_DIS	I	Transmitter Disable	w/ PUR	76	NC		Donotconnect	
25	RX_LOS	0	Loss of Optical Input Signal	LVCMOS	77	GND		Ground	
26	MOD_LOPWR	I	Module Low Power Mode	LVCMOS w/ PUR	78	REFCLKp		Not Used	
27	MOD_ABS	0	Module Absent Indicator	GND	79	REFCLKn			
28	MOD_RSTn	T	Module Reset	LVCMOS w/ PDR	80	GND		Ground	
29	GLB_ALRMn	0	Global Alarm	LVCMOS (open drain)	81	NC		Do not connect	
30	GND		Ground		82	NC			
31	MDC	I	Management Data Clock	1.2V CMOS	83	GND		Ground	
32	MDIO	I/O	Management bi-dir. Data	1.2V CMOS	84	TX_YQn	I	Tx YQ input RF signal (RF	
33	PRTADRo		MDIO Physical Port addr. bito)/	85	TX_YQp		mapping [o,o,o])	
34	PRTADR1	I	MDIO Physical Port addr. bit1	1.2V	86	GND		Ground	
35	PRTADR2		MDIO Physical Port addr. bit2	CIVIOS	87	TX_YIn		Tx YI input RF signal	
36	VND_IO_C				88	TX_YIp	'	(RF mapping [o,o,o])	
37	VND_IO_D	-	Do not connect		89	GND		Ground	
38	VND_IO_E				90	NC		Do not connect	
39	3.3V_GND		Ground		91	NC			
40	3.3V_GND		Ground		92	GND		Ground	
41	3.3	-			93	NC		Do not connect	
42	3·3 [∨]		3.3V Power Supply		94	GND		Ground	
43	3·3⊻ 2 2V				95	TX XOn		Ty XO input REsignal (PE	
44	3 3V GND				97	TX XOn	1		
45 46	3.3V GND		Ground		98	GND		Ground	
47	NC				99	TX_XIn		Tx XI input RF signal	
48	NC		Do not connect		100	TX_XIp		(RF mapping [o,o,o])	
49	GND		Ground		101	GND		Ground	
50	NC		Do not connect		102	NC		Do not connact	
51	NC				103	NC		Do not connect	
52	GND		Ground		104	GND		Ground	

8. Register Allocation

The total CFP register space (from 8000h to FFFFh) is logically divided into 8 pages with each page starting at even hex thousand, that is, 8000h, 9000h, A000h, ..., Foooh, with each page further divided into 32 tables.

The CFP MSA specifies the starting address of all non-volatile registers (NVR) at 8000h (8 NVR tables in total).

Page Aoooh is allocated for volatile registers (VR). The CFP MSA specifies four VR tables for module configuration, control, and various DDM related functions.

Start Address (hex)	End Address (hex)	Table Name and Description					
0000	7FFF	Reserved for IEEE 802.3 use					
8000	807F	CFP NVR 1. Basic ID registers					
8080	8oFF	CFP NVR 2. Extended ID registers					
8100	817F	CFP NVR 3. Network lane specific registers					
8180	81FF	CFP NVR 4					
8200	83FF	MSA Reserved					
8400	847F	Vendor NVR 1. Vendor data registers					
8480	84FF	Vendor NVR 2. Vendor data registers					
8500	87FF	Reserved by CFP MSA					
8800	887F	User NVR 1. User data registers					
8880	88FF	User NVR 2. User data registers					
8900	8EFF	Reserved by CFP MSA					
8Foo	8FFF	Reserved for User private use					
9000	9FFF	Reserved for vendor private use					
A000	A07F	CFP Module VR 1. CFP Module level control and DDM registers					
A080	AoFF	MLG VR 1. MLG Management Interface registers					
A100	A1FF	Reserved by CFP MSA					
A200	A27F	Network Lane VR 1. Network lane specific registers					
A280	A2FF	Network Lane VR 2. Network lane specific registers					
A300	A37F	Network Lane VR 3. Network Lane n Vendor Specific FAWS Registers					
A380	A ₃ FF	Reserved by CFP MSA					
A400	A47F	Host Lane VR 1. Host lane specific registers					
A480	ABFF	Reserved by CFP MSA					
ACoo	AFFF	Common Data Block Registers					
Вооо	BFFF	Allocated for OIF MSA-100GLH modules					
Сооо	FFFF	Reserved by CFP MSA					

Figure 3. Register of a CFPx

C2DTUACOMR03_RevA.docx

9. Ordering Information

Part Number	Description
C2DTUACOMR03	CFP2 ACO, DWDM, Tx (tunable), Rx (coherent), 100G DP-QPSK / 200G DP-16QAM,
	dual LC connector, o°C to 70°C, DDM

10. Document Revision Information

Revision	Description
A	Initial release

