

QBDTUMCS1003 – QSFP-DD Dual Fibre DWDM

DWDM Tunable 50GHz / DCO / 100 Gigabit Ethernet

For your product safety, please read the following information carefully before any manipulation of the transceiver:

This transceiver is specified as ESD threshold 1kV for SFI pins and 2kV for all others electrical input pins, tested per MIL-STD-883G, Method 3015.4/JESD22-A114 A (HBM). However, normal ESD precautions are still required during the handling of this module.

This is a Class1 Laser Product according to IEC 60825-1:2007. This product complies with 21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice No. 50, dated (June 24, 2007).

The optical ports of the module need to be terminated with an optical connector or with a dust plug in order to avoid contamination.

Overview

QBDTUMCS1003 is a high performance QSFP-DD transceiver module for 100 Gigabit Ethernet DP-QPSK modulated data links over two single mode fibres. The maximum reach is up to 300km without inline chromatic dispersion compensation. The narrow linewidth tunable laser is shared between the transmitter and receiver sections (LO). A tapped monitor diode is used to control the optical output power.

The receiver module is performing the coherent intradyne reception and O/E conversion of the incoming optical signal after being mixed with a local optical oscillator. Four pairs of balanced photo detectors perform quadratic detection and produce I and Q components of the two orthogonal polarizations (H and V).

This transceiver module is compliant with the QSFP-DD Multisource Agreement (MSA) and hot pluggable. Always contact Skylane Optics® commercial agents for compatibility with different equipment platforms.

Features

- QSFP-DD Multi-Source Agreement compliant
- Hot pluggable QSFP-DD footprint (Type 2A)
- Supports 100Gbps Payload (OpenZR+)
- 100GAUI-2 (2× 26.5625GBd PAM4) Serial Electrical Interface, RS-FEC (544/514)
- CAUI-4 (4× 25.78125Gbps NRZ) Serial Electrical Interface, RS-FEC (544/528)/No FEC
- Dual LC Optical Interface
- Tunable C-band Transmitter
- Coherent Receivers
- O-FEC (15%) with 11.6dB Net Coding Gain
- Up to 300km Point-to-Point Transmission on Single Mode Fibre
- Operating temperature range: -5°C to 80°C
- Power Dissipation < 16.5W
- Single +3.3V Power Supply

Applications

100 Gigabit Ethernet

Optical Interface

P/N	Wavelength	Protocol	Optical Output Power¹ [dBm]	Receiver Sensitivity ² [dBm]	Optical Receiver Overload³ [dBm]
QBDTUMCS1003	ITU DWDM	100GBASE	-6 to -2	≤ -32	4

- 1. EOL over operating temperature range
- 2. Minimum input power needed to achieve post-FEC BER $\leq 10^{-15},\,100G$ DP-QPSK, OSNR>35dB
- 3. The optical input to the receiver should not exceed this value. Transmitters must never be directly connected to receivers before ensuring that proper optical attenuation is used

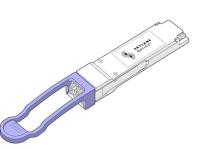


Figure 1. QSFP-DD LC (non-binding illustration)

Datasheet

5. Technical Parameters

5.1. Recommended Operating Conditions					
Parameter	Min	Тур	Max	Unit	Notes
Storage temperature	-40		85	°C	
Operating Case Temperature	-5		80	°C	
Relative Humidity			85	%	Non-Condensing
Power Supply Voltage	3.218	3.3	3.465	V	
Power Supply Current			6	A	
D. C.			16.5	W	
Power Consumption			1.5	W	4

^{4.} Low power mode

5.2. General Specifications							
Parameter	Min	Тур	Max	Unit	Notes		
Supported Host Signal Types		103.125		Gbps	5		
Line Baud Rate		30.07		GBd	6		

As per IEEE 802.3-2012
 100G DP-QPSK, O-FEC

5.3. Transmitter Optical Specifications					
Parameter	Min	Тур	Max	Unit	Notes
Average Output Power	-6	-4.5	-2	dBm	7, 9
Laser Linewidth			300	kHz	
Transmitter VOA Dynamic Range	10			dB	8
Output Power Stability	-1		1	dB	
In-Band OSNR	35			dB/0.1nm	
Out-of-Band OSNR	35			dB/0.1nm	
Frequency Range	191.275		196.125	THz	10
Centre Frequency	vt -1.5	VT	VT +1.5	GHz	11
Channel Spacing	6.25			GHz	
Centre Wavelength Range	1528.58		1567.34	nm	
Centre Wavelength	λт -15	λ_{T}	λт +15	pm	

^{7.} Output power coupled into a 9/125 µm single mode fibre
8. The output power is settable in steps of 0.1 dB within the specified wavelength range
9. With Tx VOA attenuation set to minimum
10. Per ITU-T G.694.1 DWDM grid definition
11. Applies also to LO

Datasheet QBDTUMCS1003_RevA

5.4. Receiver Optical Specifications					
Parameter	Min	Тур	Max	Unit	Notes
Receiver Operating Wavelength	1528.58		1567.34	nm	
Receiver Input Power Range	-20		4	dBm	12
Extended Receiver Input Power Range	-25		4	dBm	13
Receiver Sensitivity			-32	dBm	14
Acquisition Range	-3.6		3.6	GHz	15
Upstream Tx Linewidth			1000	kHz	4
OSNR Tolerance		14	15.5	dB	16
Crosstalk Tolerance			17	dB	17
Chromatic Dispersion Tolerance			5000	ps/nm	18

- 12. An input power in this range guarantees optimum OSNR performance

 13. With ≤1dB OSNR tolerance degradation

 14. Minimum input power needed to achieve post-FEC BER ≤10⁻¹⁵, 100G DP-QPSK, OSNR>35dB

 15. Frequency offset between received carrier and LO

 16. At optimum input power range

 17. Ratio of accumulated crosstalk channels to signal power

- 18. Less than 0.5dB receiver sensitivity penalty compared to OSNR>35dB

6. Transceiver Electrical Pad Layout

Top side							В	ottom si	de		
38	GND	76	GND				GND	39		GND	1
37	TX1n	75	TX5n				TX6n	40		TX2n	2
36	TX1p	74	TX5p				TX6p	41		TX2p	3
35	GND	73	GND				GND	42		GND	4
34	TX3n	72	TX7n				TX8n	43		TX4n	5
33	TX3p	71	TX7p				TX8p	44		TX4p	6
32	GND	70	GND				GND	45		GND	7
31	LPMode	69	Reserved		Module		Reserved	46		ModSelL	8
30	Vcc1	68	Vcc2		lu]e		VS1	47		ResetL	9
29	VccTx	67	VccTx1		Card Edge		VccRx1	48		VccRx	10
28	IntL	66	Reserved		rd H		VS2	49		SCL	11
27	ModPrsL	65	NC		dge		VS3	50		SDA	12
26	GND	64	GND		(0		GND	51		GND	13
25	RX4p	63	RX8p				RX7p	52		RX3p	14
24	RX4n	62	RX8n				RX7n	53		RX3n	15
23	GND	61	GND				GND	54		GND	16
22	RX2p	60	RX6p				RX5p	55		RX1p	17
21	RX2n	59	RX6n				RX5n	56		RX1n	18
20	GND	58	GND				GND	57		GND	19

Legacy QSFP28 pads Additional QSFP-DD pads Additional QSFP-DD pads Legacy QSFP28 pads

Figure 2. QSFP-DD Electrical Pad Layout

Datasheet

7. Module Electrical Pin Definition

Pin	Name	Function	Pin	Name	Function
Number			Number		
1	GND	Ground	39	GND	Ground
2	TX2n	Transmitter Inverted Data Input	40	TX6n	Not Used
3	TX2p	Transmitter Non-Inverted Data Input	41	TX6p	Not Osed
4	GND	Ground	42	GND	Ground
5	TX4n	Transmitter Inverted Data Input	43	TX8n	Not Used
6	TX4p	Transmitter Non-Inverted Data Input	44	TX8p	Not Osed
7	GND	Ground	45	GND	Ground
8	ModSelL	Module Select	46	Reserved	For future use
9	ResetL	Module Reset	47	VS1	Module Vendor Specific 1
10	VccRx	+3.3V Power Supply Receiver	48	VccRx1	3.3V Power Supply
11	SCL	2-wire serial interface clock	49	VS2	Module Vendor Specific 2
12	SDA	2-wire serial interface data	50	VS3	Module Vendor Specific 3
13	GND	Ground	51	GND	Ground
14	RX3p	Receiver Non-Inverted Data Output	52	RX7p	N II I
15	RX3n	Receiver Inverted Data Output	53	RX7n	Not Used
16	GND	Ground	Ground 54 GND		Ground
17	RX1p	Receiver Non-Inverted Data Output	55	RX5p	N. H. I
18	RX1n	Receiver Inverted Data Output	56	RX5n	Not Used
19	GND	Ground	57 GND		Ground
20	GND	Ground	58	GND	Ground
21	RX2n	Receiver Inverted Data Output	59	RX6n	V
22	RX2p	Receiver Non-Inverted Data Output	60	RX6p	Not Used
23	GND	Ground	61	GND	Ground
24	RX4n	Receiver Inverted Data Output	62	RX8n	NI . II . I
25	RX4p	Receiver Non-Inverted Data Output	63	RX8p	Not Used
26	GND	Ground	64	GND	Ground
27	ModPrsL	Module Present	65	NC	No Connect
28	IntL	Interrupt	66	Reserved	For future use
29	VccTx	+3.3V Power supply transmitter	67	VccTx1	3.3V Power Supply
30	Vcc1	+3.3V Power supply	68	Vcc2	3.3V Power Supply
31	LPMode	Low Power Mode	69	Reserved	For future use
32	GND	Ground	70	GND	Ground
33	TX3p	Transmitter Non-Inverted Data Input	71	TX7p	NL. II. I
34	TX3n	Transmitter Inverted Data Input	72	TX7n	Not Used
35	GND	Ground	73	GND	Ground
36	TX1p	Transmitter Non-Inverted Data Input	74	TX5p	NI . II I
37	TX1n	Transmitter Inverted Data Input	75	TX5n	Not Used
38	GND	Ground	76	GND	Ground

8. EEPROM

QSFP-DD CMIS Rev 4.0

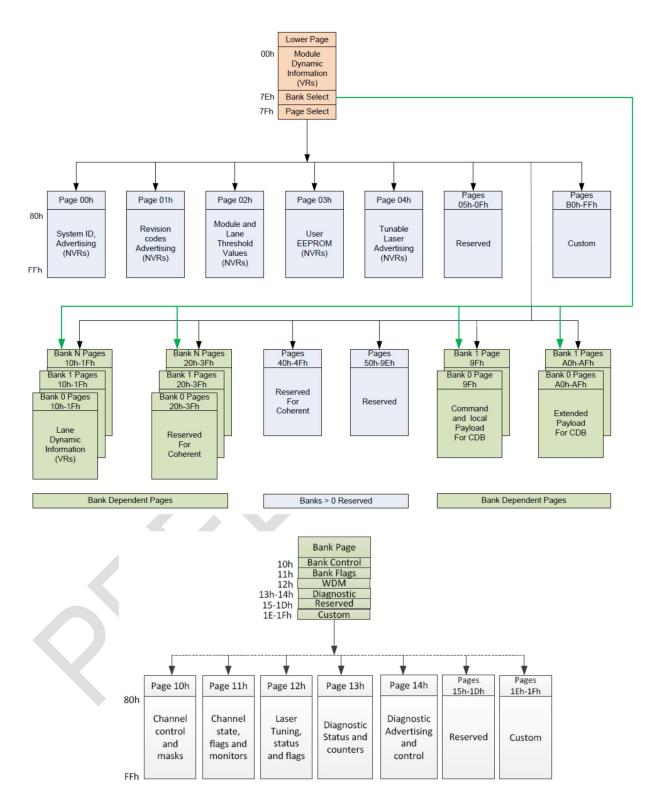


Figure 3. QSFP-DD Memory Map

Datasheet

QBDTUMCS1003_RevA

9. Ordering Information

Part Number	Description
QBDTUMCS1003	QSFP-DD DCO, DWDM, Tx (tunable), Rx (coherent), 300km reach on SMF, 100 Gigabit Ethernet (OpenZR+), dual LC connector, 0°C to 70°C, DDM

10. Document Revision Information

Revision	Description
A	Initial release

Skylane Optics® supplies a broad range of optical transceivers. Our engineers work closely with our customers to find the best solutions for every application. We are committed to provide high quality products and services to our customers.

For questions on this product please contact: support@skylaneoptics.com

Beyond Quality

Reliable Alliance

Performing Smartly